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POISSON LIMITS FOR PAIRWISE AND AREA 
INTERACTION POINT PROCESSES 

S. RAO JAMMALAMADAKA,* University of California 
MATHEW D. PENROSE,** University of Durham 

Abstract 

Suppose n particles xi in a region of the plane (possibly representing biological 
individuals such as trees or smaller organisms) have a joint density proportional to 
exp{- 2i<j 4(n(xi - 

xj))}, with q a specified function of compact support. We 
obtain a Poisson process limit for the collection of rescaled interparticle distances as 
n becomes large. We give corresponding results for the case of several types of particles, 
representing different species, and also for the area-interaction (Widom-Rowlinson) 
point process of interpenetrating spheres. 

Keywords: Area-interaction process; Gibbs distribution; limit laws; point process; 
spatial statistics; U-statistics 

AMS 1991 Subject Classification: Primary 60G55 
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1. Introduction 

Suppose the locations of n particles in d-dimensional space (such as biological individuals 
in a region of the plane or molecules in a region of space) are represented by points xi in 

Id, with d > 1. A simple stochastic model for their positions has them independently 
distributed with common probability density function f (for example, f could be a measure 
of the richness of the soil at a given point on the ground). We call this the null distribution. 

A more complex model is the pairwise interaction point process, also known as a form 
of Gibbs distribution. An energy function /)n : d -- I is specified and the null density 
is weighted multiplicatively, by exp(-n (xi - xj)) for each pair of distinct particles xi, xj, 
giving a joint density function of the form 

f ()(X ... Xn) = Z eXp- n(Xi - j) [ f(i ) (1.1) 
i<j<n i=1 

with Zn a normalizing constant. For a discussion and bibliography on distributions of this form, 
see Diggle et al. [5], or Stoyan et al. [15, Section 5.5]. Here we consider only distributions 
which are conditioned to have n points. 

We consider the case where n (X) takes the form 0 (n2 x d), with ( a specified function of 

compact support. This means that as n becomes large the range of interaction becomes small in 
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such a way that the expected number of pairs of particles which interact, under the null distribu- 
tion, tends to a finite limit. This corresponds to the 'sparseness' regime considered by Saunders 
et al. in [12, 13], who obtained limit distributions for the number of interacting pairs in the 
special case of a uniform null distribution and with certain specific step function forms for 4. 

In this note we obtain limiting distributions for the set of small interparticle distances, for a 
large class of null distributions and functions 0 (Theorems 3.1 and 3.2). We also consider the 
case where there are several types of particles (representing, for example, different biological 
species) with a different energy function for each pair of types of particles (see Theorem 
4.1). Our proofs use Laplace functional methods and general results in the literature on U- 
statistics. Proposition 2.1 on generalized Gibbs distributions and Proposition 4.1 on multitype 
U-statistics are key steps in our proofs, and are also of some interest in their own right. 

In Section 5 we apply the same methods to the area-interaction point process, conditioned 
to have n points. For our purposes, this is defined by a joint density of the form 

n 

f (n(xl, ...,n) c (exp-ynVrn(xl,x2,..., Xn)}) f(xi), (1.2) 
i=l 

where Vr (xl, ...., Xn) denotes the volume of the union of balls of radius r centred at x ..., Xn, 
and Yn and rn are parameters. This form of density (for d = 2, hence the nomenclature) 
was proposed by Baddeley and van Lieshout [2] in the context of spatial statistics, having 
previously appeared in the physics literature [17]. We investigate a limiting regime for the 
parameters (Yn, rn) which is analogous to that considered for pairwise interaction processes; 
there turns out to be an asymptotic equivalence with a pairwise interaction process with a 
specific non-step function form for 0. 

Both for pairwise and area interactions, the 'sparse' limits considered are not particularly 
natural from the statistical physics perspective, but are quite reasonable in the representation 
of the locations, for example, of a rare plant or nesting sites of a rare bird. 

2. A general result 

We start by looking at generalized Gibbs distributions, by which we mean distributions 
for which some tractable null measure ,tn is weighted by a Radon-Nikodym derivative pro- 
portional to e-U, where U is the value of an 'energy function' summed over the points of 
an induced point process. More formally, a generalized Gibbs distribution is a probability 
measure ,' defined by (2.1) below. We shall give a simple result (Proposition 2.1) about gen- 
eralized Gibbs distributions which may by applicable in other settings than those considered 
here. See for example [16] for a variety of possible applications of models of this form. 

Let S be a complete separable metric space, and let B denote the Borel a-field on S. Let 
A be the space of locally finite counting measures on (S, B). For M E MA and g: S -> R we 
use the inner product notation (M, g) for the integral fs g dM. Clearly M is identified with a 
set of points and (M, g) is the sum of the values of g at those points. 

A pointprocess on S is a random element 4 of M. If X is a locally finite measure on (S, SB), 
a Poisson process with mean measure X is a point process for which the random variables 
( , IAi ) are independent Poisson variables with respective means X(Ai) for any finite collection 
of disjoint sets Ai E S with X(Ai) < oo. In terms of Laplace functionals, Poisson processes 
are characterized as follows (see [11, Proposition 3.6]): 

Lemma 2.1. Let 4 be a pointprocess on S and let X be a locallyfinite measure on (S, S). Then 
t is a Poisson process with mean measure X, if and only iffor all measurable g: S -- (-oo, oo] 
bounded below and of compact support, 

76 - SGSA 



Poisson limits for point processes 

Eexp(- (, g)) = exp (e-(x) - l)(dx). 

Here and throughout this paper, we use the convention exp(-oo) = 0. 
Our general result is in the following setting. For n E N, let (On, 7n, /n) be probability 

spaces and let n : Qn -X AM be measurable for n = 1, 2, 3,.... Suppose :? S - (-oo, oo] 
is a measurable 'energy function' of compact support. The associated generalized Gibbs 
measures are probability measures /1 on (On, 7n) defined by 

/4(dw) = Zn1 exp(-(n()(w), 0)),dn(dw), (2.1) 

with zn a normalizing constant. We write AO for the set of discontinuity points of 4. 
We are interested in the asymptotic distributions of the under t he unr measures /n and 'n. 

For A C S write AA for the boundary of A. If 4 and 4n (n E N) are point processes on S, 
we say the sequence 4n converges weakly to 4, and write n =i 4, if the finite-dimensional 
distributions converge, i.e. if for any finite collection of bounded Borel sets Ai satisfying 
4(oAi) = 0 almost surely, the joint distributions of n (Ai) converge weakly to those of 4(Ai). 
This is equivalent to other definitions of weak convergence; see e.g. [4, Section 9.1]. Weak 
convergence of point processes is characterized in terms of Laplace functionals as follows [11, 
Proposition 3.19]: 

Lemma 2.2. Let 4 and 4n (n = 1, 2, 3, ...) be point processes on S. Then n => 4 if and only 
if E exp(- (n, g)) -> Eexp(- (, g)) for all measurable g : S -> [0, oo] of compact support 
with (4, lAg) = 0 almost surely. 

The main result of this section says that if under iLn the point processes 4n are asymptotically 
Poisson, then under the generalized Gibbs distribution 1/4 given by (2.1), they are again 
asymptotically Poisson, with mean measure inflated locally by exp(-0(x)): 

Proposition 2.1. Suppose p is non-negative. Suppose that under An the sequence of point 
processes 4n converges weakly to a Poisson process with locally finite mean measure X satis- 
fying X\(A() = 0. Then under i,A the point processes 4n converge weakly to a Poisson process 
with mean measure i' given by X'(dx) = e-4(x)X(dx). 

Proof Let E, E' denote expectation under /tn, /X respectively. By definition 

n = Eexp(- (n, )). 

By Lemmas 2.1 and 2.2, 

Zn -- exp (e-(x) - l)X(dx) =: z. 

Let g : S -+ [0, oo] be measurable with X(Ag) = 0. By Lemma 2, 

E' exp(-(n , g)) = z1 j exp(-(4n (w), g + 0)))tn(dw) 

- zexp f(e-0(x)-(x) - l)(dx) 

= exp (e- -(x)-g - e-(x))X(dx) = exp (e-g(x) - l)'(dx), 

and the result follows by Lemmas 2.1 and 2.2. 
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3. Interpoint distances 

Returning to the particle picture of Section 1, we extend Theorem 1.1 of [13] to general null 
densities f and non-negative energy functions 0. In what follows, 8 (x) denotes the unit point 
measure at x and Cd = rd/2/ r((d/2) + 1), the volume of the unit ball in Rd. 

Theorem 3.1. First let f be a bounded probability density function on Rd, and let 
( : R+ -- [0, oo] be almost everywhere continuous with compact support. Suppose that 
for each n, Xn,..., Xn are d-dimensional random variables with joint probability density 
function 

f(n)(xl.... Xn) = Zn1 exp 1- E (n2li -xj id) )(f(xi) (3.1) 
i<j<n i=l 

with Zn a normalizing constant. Then the sequence of 1-dimensionalpoint processes 

n:= 3E 5(n21Xn - X Id) (3.2) 
i<j<n 

converges weakly to a Poisson process on iR+ with mean measure Xo given by 

Xo(du) = cd (ff)e- ) du. (3.3) 

Proof Let Qn = (Rd )n and let ftn be the probability measure on Qn corresponding to 

independent variables with common density f, that is for x = (xl,.... Xn) E Q2 take 
An (dx) = ni=l (f(xi)dxi). If Xn is a random element of Qn with distribution ,/n, then 
n (Xn) converges in distribution to a Poisson process on R+ of rate cd(f f2)/2. See Silverman 

and Brown [14, Theorem C] or Jammalamadaka and Janson [7]. Applying Proposition 2.1 we 
get the result. 

When 0 takes negative values, this proof breaks down (see the remark following Theo- 
rem 1.1 of [13]), but can be retrieved when 0 has a hard-core component, as we now show, 
extending Theorem 2.3 of [13] to general null densities and energy functions. 

Theorem 3.2. Suppose that H > 0 and +: It - [-H, +oo] has a hard-core component, 
i.e. there exists ro > 0 such that ?(u) = +oo for 0 < u < rd. Additionally assume there 
exists rl > ro such that ?(u) = 0 for u > rd. Suppose that for each n, X,... Xn are 
d-dimensional random variables with joint probability density function given by (3.1). Then 
the sequence of point processes ~n defined by (3.2) converges weakly to a Poisson process with 
mean measure .o given by (3.3). 

Proof Let ~ be an inhomogeneous Poisson process on IR with mean measure Xo given by 
(3.3). By Theorem 3.1, under ]un we have the weak convergence of random variables 

exp(- (n, 0)) := exp(-(~, 0)), (3.4) 

but since 0 is no longer assumed to be non-negative the corresponding convergence of expec- 
tations is not immediate. 

Let Xo and X1 denote the indicator functions of the intervals [0, rO] and [0, r4] respectively. 
Then 

exp(-2(~n, 0)) < (exp(2H(n, X1M)))l{n, XO)=O}. 
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Let Ai,j be the event that n21Xn - Xj Id < rd. Let C = (2rl/ro)d. If (~n, X0) = 0, then no 
ball of radius n-2/drl can contain more than C of the points X, .... Xn, so that (~n, X1) < 

CE=2 l{Ui<yA,j }. Hence, 

exp(-2(n, )) < exp(2CH l{Ui<j,Aij ) 
j=2 

n 

< 171(e2CHl{ui<jAi,j} + 1). 
j=2 

There is a constant C' such that ,in[AijlXI,..., Xj-1] < C'j/n2 for each j, and so by 
successive conditioning under /tn, 

Eexp(-2(n, 4)) < + 1 < exp(C'e2CH), 
=2 

so that the random variables exp(-(n, 0)) are uniformly integrable. Then by (3.4), 

E(exp - (n, 0)) -- E(exp -(}, 0)). 

The same argument applies when 0 is replaced by 0 + g, with g e CK (I+). Thus the proof 
of Proposition 2.1 applies as in the proof of Theorem 3.1. 

Remark. The practical significance of Theorem 3.1 is that pairwise interaction processes with 
0 > 0 are a wide and useful class of models for spatial point processes with inhibition between 
points; for discussion see [2, 5, 15]. For these processes, Theorem 3.1 is useful whenever one 
needs to calculate something based only on the interpoint distances. 

In the attractive case ( < 0), matters are less clear. Empirical studies, for example by 
Geyer and Thompson [6], and M0ller [9], have been made of the attractive Strauss model, in 
which 0= - l(o,p] with parameters 0 < 0 and p > 0, and the underlying density f uniform on 
a given region such as the unit torus. These indicate that with n, p and X fixed, as 0 becomes 
more negative, there is a sudden transition from a Poisson-like distribution of points to one 
favouring highly clustered configurations. This limits the usefulness of the process as a model 
for moderately clustered configurations. 

It can be shown that in the sparse limit for the attractive Strauss model with any negative 
0, as n becomes large the distribution strongly favours highly clustered configurations. If we 
add a hard-core component to the potential, Theorem 3.2 shows that this theoretical difficulty 
is avoided; however, practitioners have found that some of the practical limitations alluded to 
in the previous paragraph remain. See the discussion in [9]. 

We conclude this section with a result on the rate of convergence in a special case of 
Theorem 3.1. For the rest of this section, take 0 - 01(o,p] with 0 > 0 and p > 0 (the 
inhibitive Strauss model). Instead of the entire point process n, consider the number of points 
of n in a fixed interval (0, a], here denoted by 4n (a). Theorem 3.1 shows that the distribution 
of n (a) converges to the Poisson with mean Xo((O, a]). 

Write Po(X) for a Poisson variable with mean X. Given integer-valued random variables 
Y, Z, the total variation distance DTV(Y, Z) between their distributions is sup IEh(Y) -Eh(Z) I 
with the supremum taken over all test functions h : Z -> [0, 1]. The rate of convergence result 
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is that under suitable smoothness conditions on f (see below), there is a constant c, depending 
on a, 0, p, and the density f, such that 

DTv(~n(a), Po(Xo(0, a])) < cnn-min(12/d) (3.5) 

We sketch a proof of (3.5). Suppose X1, X2, ... are independent with common density f. For 
a > 0, set Un,a = Ei<j<n l{n2XXi-XjlId<a Then for any test function h Z - [0, 1], 

E[h(n () E[h(Un,a) exp(- Un,p)] E[h(n(a)] = . (3.6) 
E[exp(-OUn,p)] 

If the restriction of f to its support supp(f) is sufficiently smooth, and also the boundary of 
supp(f) is well-behaved, then for any a > 0 we have 

EUn,a - cda f f2 = O(n-min2/d)) (3.7) 

The extra condition required on f is that (3.7) holds (as well as f being bounded). For 
example, if f is uniform on the unit cube then (3.7) holds. 

Using Theorem 1 of Arratia et al. [1] (see also [3]), it can be shown that 

DTV(Un,a, Po(EUn,a)) = O(n-). 

Moreover, for a < b, Theorem 2 of [1] can be used to show that the total variation distance, 
between the joint distribution of Un,a and Un,b - Un,a, and the joint distribution of independent 
Poissons with means EUn,a and E[Un,b - Un,a], is also O(n-l). Using these facts along with 
(3.6) and (3.7), one can establish (3.5); we omit further details. 

The above suggests that n- min(1,2/d) may be the rate of convergence for the general case of 
Theorem 3.1, and for subsequent results in this paper, but we do not have proofs. 

From a practical point of view an explicit value for c in (3.5) would be useful. With this 
in mind we give a more explicit result for the special case of the inhibitive Strauss model 
taking f to be the uniform distribution on the unit torus with d = 2. In this case, defining 
u = exp(7rp(e-0 - 1)), we have 

DTv(n (a), Po(Xo(0, a])) < (7r max(a, p))2 + (rp)2 + 4o((0, a]))n- + (n-2). 
+ u2 (.Tr + Xo((O, al) n-1 (n 

4. Several types of particles 

We now generalize the setting of the last section by allowing more than one type of particle. 
Strauss [16] also worked on the multitype setting, with random sample sizes, using differ- 
ent methods from those used here. We assume that there are a types of particle, and the 
null probability density function for particles of type a is fa, assumed bounded for each 
a. In what follows we assume that na = na(n) are numbers satisfying E= na = n and 

limnoo(na/n) = Jta E (0, 1), so that necessarily Ea ra = 1. The energy function q)a,b is 
defined for each (a, b) E A where we set A = {(a, b) Z2 : 1 < a < b < a}. 

Our main result on multitype pairwise interaction distributions (Theorem 4.1) says that the 
rescaled interpoint distances between type a and b particles converge to Poisson processes 
with rates Xa,b exp(-Oa,b(u)) du, which are independent for different pairs (a, b). 
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First we obtain a Poisson limit in the case of no interactions (4a,b = 0 for all a, b). This is a 
multitype generalization of a result of Silverman and Brown [14, Theorem C] on U-statistics. 
We wish to record small interpoint distances separately for each pair of types of particle. This 
gives us a point process in the union of A disjoint copies of IR+, or more precisely, in the space 
I+ x A, metrized as a subset of 13. Let 2n = na=1 ((]d)na). A typical element of Qn is a 
vector x of the form x = H-a_<a((xa , x .. ,Xnaa), with each xa E d . An element x of Qn 
gives rise to a realization of a point measure n (x) on 1R+ x A by 

n (X) = E8((n2x - x Xbd, (a, b))) (4.1) 

with >' meaning a sum taken over all (a, b) E A, i < na, j < nb with i <j ifa = b. 

Proposition 4.1. Let ,Un be the measure on Qn corresponding to na independent particles of 
type a with common density fa for each a; 

Oa na 

tn(dx) = H H(fa(x ) dx). (4.2) 
a=1 i=1 

Let Xn be a random element of Qn with distribution tln. Then the induced point process 
~n (Xn) converges weakly to a Poisson process on IR? x A with mean measure 

X(du x {(a,b)) = a,b du, u IR+, (a,b) E 

where we define Xa,b = CdJraTrb f fafb if a A b and Xa,b = (l/2)cdr a f f2 if a = b. 

Proof Let X denote the indicator function of a set in + x A of the form Ua<bAa,b x {(a, b)}, 
with each Aa,b a finite union of bounded intervals. Let Xa,b be the indicator function of Aa,b 
for each (a, b) E A. By a result of Kallenberg ([8, Theorem 2.3] or [11, Proposition 3.22]), 
it suffices to prove that for any X of this form the variables (4n, X) are asymptotically Poisson 
with mean -a<b fAa b Xa,b(dx). In the case where all but one of the Aa,b are empty, this 
follows from Corollary 2 of [10], and the proof in general is by a similar method using random 

sample sizes. Let Na = Na(n) be independent Poisson variables with ENa = na. Let nt 
be the point process given by the right-hand side of (4.1) with >' replaced by a summation 
(denoted >") over all (a, b) E A, i < Na, j < Nb, with i < j if a = b. Then 

(~n, X) = E Xa,b(n 2Xi - Xjld). 

The combined labelled sample {(xi, a) : i < Na, a < a} forms a Poisson process in the space 
Q0 := Rd x {1, 2, ... , a with mean measure Vn given by vn(dx x {a}) = nafa(x) dx, and 
(n", X) is equal to the sum of the values of a symmetric zero-one function hn on Qo x Qo, 
summed over all distinct pairs of these Poisson points in Qo. If U and V are independent 
random elements of 2o with distribution n-1 vn, it is straightforward to show that 

00 

(n2/2)Ehn(U, V) - Xa,b f Xa,b(u) du. (4.3) 
a<b 

By Theorem 3.2 of [7], it follows that (n", X) is asymptotically Poisson with mean given by 
the right hand side of (4.3). Finally, it can be shown that EI'(A) - ' 

(A) -> 0 by arguments 
from [7, p. 1353] and [10, p. 59]. 
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Theorem 4.1. Suppose for each (a, b) E A the function ()a,b: RI -> (-00, 00] is almost 
everywhere continuous and is bounded below and has compact support. Suppose that for each 
(a, b), either O(a,b is non-negative or both Ca,a and )b,b have hard-core components, in the 

terminology of Theorem 3.2. Suppose ltn is a probability measure on Qn = na=((Id )na) 

given by 

n (dx) = Z-1 exp{- E'ia,b(n2 Ix - xjId)}Uln(dx) (4.4) 

with itn given by (4.2), and Zn a normalizing constant. Then if Xn is a random element of Qn 
with distribution itL, the sequence of point processes n (X') given by (4.1) converges weakly 
to a Poisson process on I+ x A with mean measure i' given by 

X'(du x {(a, b)}) = Xa,b exp(--Oa,b(u)) du 

with Xa,b as given in Proposition 4.1. 

Proof If : (R+ x A) -> R is given by 0((u, (a, b))) = Oa,b(u), we have 

,u (dx) = Z 1 exp(-(n (x), 0))in (dx). 

When all the O1a,b are non-negative the result is immediate from Propositions 2.1 and 4.1. In 
the case where (a,b takes negative values it is assumed that there exists ro > 0 such that 

Oa,a (u) and Pb,b(u) are both equal to +oc on u < r0. The convergence of Zn and of Laplace 
functionals can now be established along the lines of the proof of Theorem 3.2. 

5. The area-interaction process 

For the area-interaction point process, we restrict our attention to one type of particle. 
The form of density given in (1.2) can be re-stated as a joint distribution of n d-dimensional 
variables of the form 

n 

P[(Xn, X, ..., Xn) E dx] = Zn lwn(X) n(f(xi) dxi), (5.1) 
i=l 

with x = (xl, ..., xn), weight function Wn given by 

Wn(x) = exp yn(( Vrn (Xi) -Vrn (xI ... Xn)), (5.2) 

and Zn a normalizing constant. This is equivalent to (1.2) because i n 1 Vrn (xi) is a constant, 
given n. We take limits as n -- oo with parameters rn, Yn given by 

n2r = -r > 0 (5.3) 

and 

rdyn = a < 0, (5.4) 

with ,/ and a fixed constants. Conditions (5.3) and (5.4) are natural analogues to the sparse 
limit (Pn (x) = ' (n2 Ix Id) considered earlier for the pairwise-interaction process. The condition 
a < 0 says that the process is inhibitive, configurations without interaction being favoured. 
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We introduce further notation. Let Br (x) denote the ball of radius r centred at x (so Vr(x) 
is its volume), and let the volume of the intersection of B1(0) and Bl(x) be denoted lr(Ixl). 
Finally define the function lr : R+ --> R by 

*lf(r) = *((r/f)l/d). (5.5) 

Theorem 5.1. Let f be a bounded probability density function on ]Rd. Suppose that for each 
n, X, ..., Xn are d-dimensional random variables with joint distribution given by (5.1)- 
(5.4). Then the sequence of one-dimensional point processes ~n = i<j<n (n2 IX - Xjnd) 
converges weakly to a Poisson process on 1R with mean measure X1 given by 

Xl(du) = cd( f2)e -af() du. (5.6) 

Proof. We compare the area-interaction process with a pairwise-interaction process given 
by the joint distribution 

P[(X, X, .. . Xn) E dx] = z wn1(x) dx, (5.7) 

with 

wn (xI, , Xn) = exp( E P (n2 xi -xj d)). 
i<j<n 

Let Y1, Y2, Y3, ... be independent d-valued variables with common density f. The normaliz- 

ing constants Zn and Zn are given by 

Zn = Ewn(Y, .. ., Yn); Zn = EWn(Y1 . Yn) 

Let Tn be the number of 'interacting triples' (i, j, k) with 1 < i < j < k < n and I Yi - Yj < 
2rn, IYj - Yk < 2rn, and IYi - Ykl < 2rn. Then E[Tn] -- O by (5.3), so 

lim P[Tn > 0] = 0. (5.8) 
n->oo 

By inclusion-exclusion, 

(fVrnYi) -Vr(Yi...,Yn)= E Vol(Brn(Yi)nBrn(Y)) on {Tn=0}. 
i=l i<JVn '=1 i<j<n 

Since Vol(B, (x) n Brn(y)) = rn(Ix - yl/rn) = rn (n2Ix - yld) for any x andy, 

Vn(i) - Vrn(Y1..., Yn) = rnd r(n2lYi - Y d) on {Tn = O}. 
'=1 i<j<n 

Hence, on {Tn = 0} we have Wn(Y1,.... Yn) = fn(Y1 ..., Yn), and so for any g : R+ 
[0, oo] of compact support, if we define the point process rn by 

n := >E S(n 2Yi - yjld), 
i<j<n 
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and write YFl for (Y, ..., Yn), we obtain 

IEe-(Fn ) wn(y n) -Ee-( g) wn (Yn) < E[e-(ng) Iwn(Yj ) - Wn (Fn)l{n>O}], (5.9) 

and this tends to zero by (5.8), because win and Wn are uniformly bounded by 1. In particular, 
setting g _ 0, we have Zn - Zn -- 0. 

Let E, E denote expectation under distributions P and P defined at (5.1) and (5.7) respec- 
tively. Then for any g : R+ - [0, oo] of compact support, the point process 

:n := E S(n21Xn - XrId) 
i<j<n 

satisfies 
E exp(- (n, g)) = z-lE[e(-ng) wn(Yy)], 

and 

Eexp(-(n, g))= = znE[e-(ng) wn (Yn)]. 

By the proof of Theorem 3.1, both Zn and E[e-(n'g)w1n (Yn )] tend to positive finite limits as 
n -> oo. Therefore by (5.9), Ee(-n,g) and Ee(-n'g) converge to the same limit. By Lemma 2.2 
the point process n obeys the same weak convergence under P as under P, that is, to a Poisson 
process with mean measure X1, by Theorem 3.1. 

Remark. Since the original purpose of the area-interaction process [2] was as a more satisfac- 

tory alternative to the pairwise interaction process in the attractive case, it would be of interest 
to have an analogous result to Theorem 5.1 for the attractive case a > 0. However, the methods 
used here do not appear to work for this case, since (5.9) need not tend to zero. As in the 

pairwise interaction case, the weight of configurations with all particles close together grows 
in an uncontrolled way. Presumably, by adding a hard-core constraint to the attractive area- 
interaction process one could recover a Poisson limit theorem, as in the pairwise interaction 
case. 
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